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The transmission of vibrations over the surface of the ground, due to a
high-speed moving, vertical harmonic strip load, is investigated theoretically.
Consequently, the problem is essentially two-dimensional and the interior of the
ground is modelled as an elastic half-space. The transformed solutions are obtained
using the Fourier transform on the space variable. A study of a new damping model
in the spatial wave-number domain is presented in Appendix A. Numerical results
for the displacements on the surface are presented for loads moving with speeds up
to and beyond the Rayleigh wave speed of the half-space.
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1. INTRODUCTION

The problem of determining the response of a solid medium under the action of
moving loads has received considerable attention in the past. Work in this area has
been motivated by the need to determine the vibratory motion on the ground
surface and at depth caused by moving vehicles. Moreover, high-speed trains are
becoming increasingly popular and freight trains increasingly heavier. Combined
with this fact and the observation that Rayleigh wave speeds are slower in soft soils,
it is clear that the study of moving loads is important for environmental and
geotechnical engineers.

The two-dimensional problem of the steady state motion of a static line load in
an unbounded body was "rst considered by Eason et al. [1]. Eason [2], also studied
the two-dimensional steady state problem for a uniform half-space, using Fourier
transform methods. Cole and Huth [3], considered the same problem for
a constant normal line load and obtained analytical forms for the solutions for the
displacements, for the subsonic, transonic and supersonic cases, using a Helmholtz
decomposition. Georgiadis and Barber [4], corrected the Cole and Huth solution
for transonic regime. Fryba [5], also investigated the possibility of shocks in the
ground due to a line load moving at constant speed at or beyond the Rayleigh wave
0022-460X/00/151289#21 $35.00/0 ( 2000 Academic Press
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speed. Keer [6], extended the study of the subsonic case to a moving harmonic line
load with some numerical solutions. More recently, Gunaratne and Sanders [7],
studied the response of a layered elastic medium to a moving strip load using
a layer sti!ness approach and viscous damping. De Barros and Luco [8],
investigated the response of a layered viscoelastic half-space to a moving constant
line load, and studied the stresses and strains. The transient motion for a line load
which is suddenly applied on the ground and then moves with constant velocity has
been studied by Payton [9]. The three-dimensional problem of a point load moving
at constant speed on the ground demonstrating the possibility of shock formation
in the ground has been studied by a number of authors, such as De Barros and
Luco [10], Krylov [11] and Jones et al. [12].

In the present paper the transmission of vibrations due to a moving harmonic
strip load rigidly attached to an elastic half-space is investigated. A
two-dimensional model is considered to demonstrate the e!ect of a coherent line
source as a pre-cursor to a three-dimensional model of a moving point source to be
presented in a sequel. The results derived by Fourier transform are valid for any
frequency and load speed. After evaluating the inverse Fourier transforms
numerically, the values of displacements and the nature of the wavefront are
calculated for di!erent material parameters and depths of soil. For vibration and
acoustic problems in unbounded domains it is necessary to consider a suitable
damping model. For moving loads, in particular, a theoretical model requires
careful attention. An original &&modi"ed'' hysteretic damping model is investigated
in Appendix A.

2. VIBRATION TRANSMISSION

The model considered is shown in Figure 1. The strip load has a length 2b, and is
aligned with respect to the x

2
-axis. It rests on an homogeneous, isotropic, elastic

half-space, with material properties E (Young's modulus), o (density) and l (the
Poisson ratio). First, we consider no energy losses within the ground (the material
damping will be studied later). An harmonic vertical load acts uniformly over the
strip and moves in the x

1
-direction at constant speed, c. The model is

two-dimensional.
The behaviour of the half-space is described by Navier's elastodynamic

equations. In the absence of body forces, these can be written as

(j#k)$($ ) u)#k$2u"ouK , (1)

where j and k are the LameH constants, u is the vector of displacements, and the
superscripts ( G ) denote double di!erentiation with respect to time.

The stress}strain relations can be written as
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Figure 1. Geometry of model.
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In equations (2), q
ij

are the stress components, e
ij

are the strain components as
de"ned, d

ij
is the Kronecker delta, u

i
and x

i
are the ith components of the vectors

(u
1
, u

3
) and (x

1
, x

3
), respectively, and the summation convention applies. By

introducing a Helmholtz decomposition in the equations of motion and the
stress}strain relations, one obtains the following wave equations for the
two-dimensional problem:
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where U and t are the Helmholtz potentials. The co-ordinates (x
1
, x

3
) are the "xed

frame of reference, c
1

and c
2

are, respectively, the P and S wave speeds, given by
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In terms of the scalar potentials, the boundary conditions for this problem are as
follows:
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(b) at x
3
"R, there are no re#ections, which means that all wave motions are in

the positive x
3
-direction.

2.1. TRANSFORMED SOLUTION

2.1.1. Change of variables

If the motion is harmonic with frequency u and moving at a speed c in the
x
1

direction, then introducing the moving co-ordinate, x"x
1
!ct, frame one can

write:

u
1
(x

1
!ct, x

3
, t)";(x, z, t)"u(x, z) eiut , (8)

u
3
(x

1
!ct, x

3
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3
, t)"t(x, z)eiut . (11)

Thus, the derivatives are changed as follows:
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x
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where the subscript /
x

denotes partial di!erentiation with respect to x. We can
therefore re-write equation (3) as
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The boundary conditions are changed by simply replacing U and t with /eiut and
teiut in equations (6, 7).

2.1.2. Fourier transform

To solve equations (13, 14), we use a spatial Fourier transform de"ned by

h1 (b, z)"P
=

~=

h(x, z) eibt dx. (15)
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With the above de"nition of the Fourier transform, the corresponding inverse
transform will include a factor 1/(2n). Now, Fourier transforming (13, 14) gives
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Substituting
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where k"u/c and ka"u/ca a"1, 2, one obtains the di!erential equations:
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and integrating equations (19) gives
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1
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since ReMa
1
N'0, ReMa

2
N'0 re#ections from z"R are disallowed.

2.2. BOUNDARY CONDITIONS

In the transform domain, the boundary conditions (6, 7) give at z"0:
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Hence, with some algebraic manipulations (21, 22) yield a pair of equations for
AM and BM :
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For c"0 FM (b) is known as the Rayleigh function. The value of the Rayleigh wave
speed, c

R
, may be deduced from the Rayleigh function (see Appendix A).

Recapping, the longitudinal and vertical displacements are represented through
the Helmholtz potentials
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The displacements on the surface of the ground are then given by the inverse
Fourier transform:

; D
z/0

"G!
iP

2nkb P
`=

~=

sin (bb)
FM (b)

(b2#a2
2
!2a

1
a
2
)eibx dbH eiut , (28)

= D
z/0

"G!
P

2nk P
`=

~=

sin (bb)
bb

a
1

FM (b)
k2
2A

b
k
!1B

2
eibx dbH eiut . (29)

Note that if c"0, equations (28, 29) reduce to the known expressions for
a stationary harmonic vibrating strip load given by Le HoueH dec [13].
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3. NUMERICAL RESULTS

The soil characteristics were chosen from a particular British Rail site at which
the constants have been measured. The values used were therefore
E"2)69]108 Nm2, l"0)257 and o"1550 kgm3 with a loss factor for the
&&modi"ed'' damping model g"0)1, soil A in Table 1. The values of the Rayleigh,
shear and compression wave speeds were c

R
"242 m/s, c

2
"263 m/s and

c
1
"459 m/s respectively. Material constants and wave speeds for three other soils

are tabulated in Table 1. These will be used in a parametric study in a following
section. The vertical load P was given the magnitude P"2n N/m, and the half-
length b was 0)75 m.

The next section describes the behaviour of the vertical response for di!erent
load speeds.

3.1. TRANSFORM DOMAIN RESULTS

The real part of the transformed displacements, obtained with a &&modi"ed''
hysteretic damping presented in Appendix A, is plotted in Figure 2. The material
properties used to plot this "gure are the British Rail site parameters, soil A, Table
1. For a stationary load, (c"0 m/s) Figure 2(a), the major features are peaks
located at corresponding wave numbers b"$k

R
, $k

2
and $k

1
. The peak due to

the shear wave, at b"k
2
, is lost to the eye due to the dominating Rayleigh wave. As

cPc
R
"242 m/s, Figures 2(a)}2(d), the peaks in the negative wave number domain

decrease in height and move toward !R. This suggests that the contribution of
these peaks to waves propagating in front of the load are not signi"cant. On the
other hand, the peaks in the positive wave number domain move to 0 and increase
in amplitude. For non-zero damping, the inverse Fourier transform can be
calculated numerically. The solutions have been obtained by the well-known Fast
Fourier Transform (FFT) algorithm [14]. To compute the inverse transform
accurately with a discrete transform, the integrals must be truncated at su$ciently
high values to avoid distortion of the results by aliasing, while the mesh of
calculated function must be "ne enough to well represent the details of the functions
TABLE 1

Material properties

Soil A Soil B Soil C Soil D

E (Pa) 2)69]108 5)38]108 10)76]108 2)0]108
o (kg m) 1550 3100 2000 1250
l 0)257 0)257 0)257 0)257
g 0)1 0)1 0)1 0)1
c
R

(m/s) 242 242 426 232
c
2

(m/s) 263 263 463 252
c
1

(m/s) 459 459 809 441



Figure 2. Evolution of the real part of transformed vertical displacements in the wave-number
domain with increasing load speed.
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seen in the transform domain, Figure 2. It was found that, with the material
properties used here, an FFT with 8192 points and a range of !20)b)20
satis"ed both these requirements.

3.2. VALIDATION AND PRELIMINARY RESULTS

The following results, for the vertical and longitudinal responses, relate to an
observer moving with the strip load. The very high load speeds, up to 500 m/s,
are indicative for vehicles travelling beyond wave speeds associated with the soil.
Softer soils exhibit slower wave speeds close to the world record of 143 m/s. For a
stationary load, c"0 m/s, results were compared with those obtained by Jones and
Petyt [15]. In Figure 3, results non-dimensionalized by strip length show the
same solutions as in reference [15], with peak amplitude of vertical amplitude
displacements, Dw D/b"5)82]10~8, at 8 Hz. Also note, from the same "gure, that
the amplitude of the vertical displacement increases as the excitation frequency
decreases and the response is symmetric. Increasing the load speed to c"200 m/s
in Figure 4, we see a slight increase in peak amplitude, namely Dw D/b"7)03]10~8
at 8 Hz. For c

1
'c"400 m/s'c

R
, Figure 5, the responses are similar: they

represent a wavefront with almost no displacement in front of the load, since the
load speed is beyond the Rayleigh wave speed (see Appendix A), with a maximum



Figure 3. Non-dimensional vertical motion for stationary load, c"0 m/s, for "ve frequencies,
solid-line f"8 Hz, dash}dot f"16 Hz, dashed f"32 Hz, light-dot f"48 Hz, heavy-dot f"64 Hz.
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displacement at 8 Hz decreased to Dw D/b"3)36]10~8. Increasing the load speed
further, c"500 m/s'c

1
'c

R
, Figure 6, the maximum displacement is almost

equivalent for all frequencies, Dw D/b"2)45]10~8 in the neighbourhood behind the
load. We can see that the in#uence of the load speed versus frequency, for
supersonic speeds, has a minor e!ect in the local neighbourhood of the force.
However, in comparison with Figures 3 and 4, the in#uence is spread over
a signi"cant distance behind the load.

3.3. NON-DIMENSIONAL RESULTS*PARAMETRIC STUDY

Figures 3}6 show the appearance of oscillations behind the load as the load
speed increases. The apparent wavelength of these oscillations depends on both
frequency and speed of the load. The following parametric study investigates the
factors which describe this phenomenon.

3.3.1. Soil characteristics

In this part, the in#uence of the soil characteristics is studied by comparing
results obtained for four di!erent soils. The parameters of each soil are presented
in Table 1. From Figure 7, we can see that the maximum amplitude,
non-dimensionalized against appropriate Rayleigh wavelength, Dw D/j

R
at

a frequency f"64 Hz varies with di!erent soil parameters. However, the apparent



Figure 4. Non-dimensional vertical motion for load speed, c
R
'c"200 m/s, for "ve frequencies,

solid-line f"8 Hz, dash}dot f"16 Hz, dashed f"32 Hz, light}dot f"48 Hz, heavy-dot f"64 Hz.

Figure 5. Non-dimensional vertical motion for load speed, c"400'c
R

m/s, for "ve frequencies,
solid-line f"8 Hz, dash}dot f"16 Hz, dashed f"32 Hz, light}dot f"48 Hz, heavy-dot f"64 Hz.
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Figure 6. Non-dimensional vertical motion for load speed, c"500'c
1

m/s, for "ve frequencies,
solid-line f"8 Hz, dash}dot f"16 Hz, dashed f"32 Hz, light}dot f"48 Hz, heavy-dot f"64 Hz.

Figure 7. Non-dimensional vertical motion for four soil material parameters at load speed c"2c
R
,

solid-line soil A, dash}dot soil B, dashed soil C, light-dot soil D.
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&&wavelength'' of oscillation is the same for all soil types, which will only be true for
displacements over a half-space due to the dominant nature of the Rayleigh wave,
Ewing et al. [16]. For this reason, only the material parameters for one type of soil
(soil A), were subsequently used.

3.3.2. ¸oad characteristics

Although it is not shown here, the half-length of the strip load, b, has no in#uence
on the apparent &&wavelength'' of oscillation. Figure 8 shows that for di!erent values
of frequency, the general form of vertical amplitude of the displacement, Dw D/j

R
versus x/j

R
is the same, only amplitudes of displacements change. Note that

non-dimensional displacements increase with frequency.
Increasing the load speed, M

R
"c/c

R
from stationary, such that 0(M

R
)1,

with f"64 Hz, leads to a slight perturbation of the amplitude of vertical
displacements, Dw D/j

R
behind the load but an abrupt change in front of the load,

Figure 9. For high Mach numbers, M
R
'1, oscillations appear behind the load

with increasing apparent &&wavelength'' as M
R

increases, Figure 10. In Figure 11, the
non-dimensional vertical displacements are plotted against x/(j

R
(M2

R
!1)); which

shows that the &&wavelength'' of the vibrations of displacements behind the load is
directly proportional to this factor, similar to results obtained in acoustics, Morse
and Ingard [17].
Figure 8. Non-dimensional vertical motion at load speed c"2c
R
, for "ve frequencies, solid-line

f"8 Hz, dash}dot f"16 Hz, dashed f"32 Hz, light-dot f"48 Hz, heavy-dot f"64 Hz.



Figure 9. Non-dimensional vertical motion at frequency f"64 Hz for three load speeds, solid-line
c"0 m s, dash}dot c"c

R
/2, dashed c"c

R
.

Figure 10. Non-dimensional vertical motion at frequency f"64 Hz for four load speeds, solid-line
c"3c

R
/2, dash}dot c"2c

R
, dashed c"5c

R
/2, light-dot c"3c

R
.
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Figure 11. Non-dimensional vertical motion at frequency f"64 Hz for four load speeds, solid-line
c"3c

R
/2, dash}dot c"2c

R
, dashed c"5c

R
/2, light-dot c"3c

R
with the space variable non-

dimensionalized by x/(j
R
(M2

R
!1)).
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A similar study for longitudinal displacements lead to the same conclusions,
see Figure 12. Values of the amplitude of longitudinal displacements are
generally lower than those of vertical displacements. The maximum amplitude of
longitudinal displacement increases from Du D/j

R
"1)38]10~9 in the immediate

vicinity away from the load, at M
R
"0, to Du D/j

R
"1)77]10~9 at the trailing edge

of the load (x"!b).

3.3.3. Conclusions from the parametric study

In the supersonic regime, c'c
R
, it is shown that two Rayleigh waves propagate

behind the load generating a resultant wave, Figures 10 and 11. It is evident that the
only material parameter which a!ects the apparent &&oscillation'' of the resultant
wave is the Mach number M

R
. Thus, if we denote by j* the &&period'' of

non-dimensional oscillations and by j) the wavelength of the actual vertical
displacements, we observe:

j*"
j)
j
R

"

1
2

(M2
R
!1), and hence j)"

n (c2!c2
R
)

uc
R

"

2n
b
2
!b

2

, (30)

where b
1

and b
2

are the positions of the Rayleigh poles, see Appendix A. From
Appendix A it is seen that the wavelength of the resultant wave is a combination of



Figure 12. Non-dimensional longitudinal motion at frequency f"64 Hz for "ve load speeds,
heavy-dot c"0 m/s, solid-line c"3c

R
/2, dash}dot c"2c

R
, dashed c"5c

R
/2, light-dot c"3c

R
with

the space variable non-dimensionalized by x/(j
R
(M2

R
!1)).
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the two Rayleigh wavelengths. Since the dominant wave on the surface of a
half-space is the Rayleigh wave [16] this justi"es the observation (30) being
consistent with the analysis in Appendix A.

The wavelength of displacements, j) , depends on three factors: the Rayleigh wave
speed c

R
, the load speed c and its excitation u, j* depends on one factor, the Mach

number M
R
. This justi"es the interest of the factor 1/(j

R
(M2

R
!1) in the supersonic

region.

3.4. INFLUENCE OF DEPTH OBSERVATION

The amplitude of displacements decreases with depth, as shown in Figures 13
and 14 in which contour levels of vertical displacements are plotted. For a
"xed load, the response is symmetric, see Figure 13. For high load speeds,
two di!erent zones appear behind the load, delineated by two lines, see Figure 14.
These are called the Mach lines; the "rst one is due to the P wave (P-line) and
the second the S wave (S-line). The displacements are contained within the
surface of the ground and the P-line. These results agree, in form, with those of De
Barros and Luco [8], who have shown for high load speeds, that an abrupt
discontinuity along P- and S-line appears behind the load. Krylov [11], has also
shown that displacements are contained in a cone behind the load in the supersonic
region.



Figure 13. Contours of vertical motion Dw D]108, below surface of the half-space for a stationary
load and frequency f"64 Hz. Contour values are Dw D/j

R
]10~9.

Figure 14. Contours of vertical motion Dw D]108, below surface of the half-space at speed c"3c
R
.

and frequency f"64 Hz. Contour values are Dw D/j
R
]10~9.
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Figure 15. Location of the Rayleigh poles, b
1

and b
2

and typical complex integration contours,
(a) for c(c

R
and (b) for c'c

R
.
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4. CONCLUSIONS

A two-dimensional semi-analytic model of ground vibration due to a moving
harmonic strip load has been developed. The model consists of an elastic, isotropic
and homogeneous half-space, with modi"ed hysteretic damping, excited by a uniform
harmonic surface load moving with constant speed. The equations of motion were
solved with the aid of the Fourier Transform, the inverse transformation being
performed with the inverse FFT. The contribution of the Rayleigh poles was studied
in the transformed wave-number domain, showing the existence of a Doppler e!ect
in the subsonic case. Results presented show the behaviour of the transformed
vertical components in the wave-number domain, and vertical displacements for
a range of speeds and excitation frequencies. As the load speed of the vertical strip
load advanced beyond the Rayleigh wave speed, a shock cone develops behind the
load con"ned to the region between the shock fronts.
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APPENDIX A: ANALYSIS OF MODIFIED DAMPING MODEL

For the purpose of numerical integration it is worth examining the Rayleigh
function FM (b) (27) for zero damping, g"0. By tracking the location of poles and
branch points for various load speeds, in the complex plane, the dominant features
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of the solution may be determined. Writing the Rayleigh function in full:

FM (b)"b4GA2!
k2
2

b2A1!
b
kB

2

B
2
!4A1!

k2
1

b2 A1!
b
kB

2

B
1@2

A1!
k2
2

b2A1!
b
kB

2

B
1@2

H
(A1)

and the Rayleigh function, F
R

[13], for a stationary harmonic force:

F
R
(k

R
)"A2!

k2
2

k2
R
B
2
!4 A1!

k2
1

k2
R
B
1@2

A1!
k2
2

k2
R
B
1@2

(A2)

from which the Rayleigh wave speed, c
R
, and Rayleigh wave number, k

R
"u/c

R
,

may be calculated.
Comparing equations (A1) and (A2) we see that the poles in the (c, b)-plane

satisfy the equation.

A1!
b
kB

2
"

b2

k2
R

. (A3)

Therefore, the poles lie on the two curves, b
1

and b
2
, where

b
1
"

u
(c#c

R
)

and b
2
"

u
(c!c

R
)

(A4)

It is easy to see, from equation (A1), that branch points lie on the same curves with
k
R
, c

R
replaced with k

1
, c

1
or k

2
, c

2
.

The nature of the vertical and longitudinal displacements on the surface of the
half-space is dominated by the Rayleigh wave as the load speed increases beyond
the propagating speed of this surface wave. The next section gives some insight into
the choice of damping model necessary in this study.

A.1. ANALYSIS OF RAYLEIGH WAVE CONTRIBUTION WITH DAMPING MODEL

For a stationary load a hysteretic damping model, where the material exhibits
damping characterized by a loss factor g, may be used. The complex LameH
constants will be given by

j"
lE (1#ig)

(1#l)(1#2l)
, k"

E(1#ig)
2(1#l)

. (A5)

A standard hysteretic damping model (A5), is not suitable for the moving load
problem as will be demonstrated in the following section (see the remark after
equation (A11)).

For a moving load problem it is necessary to modify the standard damping
model. If we write a modi"ed hysteretic damping model through material damping
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with a factor (1#igf (k, b
m
)), m"1, 2, where

f (k, b
m
)"sign(k!b

m
), m"1, 2 (A6)

for small values of 0(g@1, where k"u/c, the poles will be situated just o! the
real-line in the complex plane. The "rst pole, b

1
is located at

b
1
+

u(c#c
R
)!iuc

R
gf (k, b

1
)/2

(c#c
R
)2#c2

R
g2/4

, (A7)

and the second pole at

b
2
+

u(c!c
R
)#iuc

R
gf (k, b

2
)/2

(c!c
R
)2#c2

R
g2/4

. (A8)

Speci"cally, for the sub-Rayleigh and super-Rayleigh cases:

(i) Sub-Rayleigh case: (c(c
R
). The poles are located at

b
1
+

u (c#c
R
)!iuc

R
g/2

(c!c
R
)2#c2

R
g2/4

and b
2
+

u(c!c
R
)#iuc

R
g/2

(c!c
R
)2#c2

R
g2/4

(A9)

as shown in Figure 15(a).

(ii) Sub-Rayleigh case: (c'c
R
). The poles are now located at

b
1
+

u (c#c
R
)!iuc

R
g/2

(c#c
R
)2#c2

R
g2/4

and b
2
+

u(c!c
R
)!iuc

R
g/2

(c!c
R
)2#c2

R
g2/4

(A10)

as shown in Figure 15(b).
Similarly, the branch points swap imaginary signs as the load speed increases

beyond the shear-wave speed, c
1
, and compressive-wave speed, c

2
. The choice of

this damping model is evident through examination of the propagating Rayleigh
waves.

For a certain load speed, c and zero damping, the two poles, b
1

and b
2
, of the

Rayleigh function FM (b) (A1), are real, and are given in equation (A4). As the load
speed, c'0, increases, the position of pole, b

1
, moves continuously from b

1
"k

R
to

b
1
"0 as cPR. However, the position of pole, b

2
, moves from b

2
"!k

R
to

bP!R as cPc
R
. Beyond the Rayleigh wave speed, the position of the pole

moves from b
2
"#R to 0. The contributions to the vertical displacement by the

onset of propagating waves for the two regions of interest, c(c
R

and c'c
R

are
outlined below.

(i) Sub-Rayleigh case: (c(c
R
) poles positions given by equations (A9). By contour

integration in the complex plane, the contribution for x'b'0 is given by the
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pole in the upper-half-plane, whereas for x(!b(0, it is given by the pole in
the lower-half-plane.
(a) For x'b, w D

z/0
JRes(b

2
)"wN (b

2
) (FM (b

2
)/FM @(b

2
)) e (ib

1
x). Thus, the vertical

displacements have an observed wavelength of b~1
2

"(c
R
!c)/u and the wave

propagates in the positive x direction.
(b) For x(!b, w D

z/0
JRes(b

1
)"wN (b

2
) (FM (b

1
)/FM @(b

1
)) e (ib

2
x). Thus, the vertical

displacements have an observed wavelength of b~1
1

"(c
R
!c)/u and the wave

propagates in the positive x direction.
This is analogous to the Doppler e!ect in acoustics [17].

(ii) Super-Rayleigh case: (c'c
R
) poles positions given by equations (A10). By

contour integration the contribution for x'b is given by the pole in the
upper-half-plane (there are none), hence
(a) for x'b, w D

z/0
"0.

Similarly, for x(!b, the contribution is given by the poles in the lower-half-
plane, hence,

(b) for x(!b,

w D
z/0

JRes(b
1
)#Res (b

2
)

JwN (b
1
)

FM (b
1
)

FM @ (b
1
)
e(ib

1
x)
#wN (b

2
)

FM (b
2
)

FM @(b
2
)
e(ib

2
x) . (A11)

Remark. Note that in (ii) (a) a pole in the upper half-plane will exist for the
standard hysteretic damping model (A5). Similarly, for the branch points. Thus, an
erroneous vertical displacement will appear in front of the load.

The displacements are composed of the superposition of two waves propagating
in the negative x direction at speeds (c#c

R
) respectively. An interesting feature

of the supersonic "eld is the interference between these contributions. These
waves, which have di!erent wavelengths and amplitudes give rise to a vertical
displacement amplitude which oscillates with space, x"x

1
!ct, the space}time

variable, with an apparent period equal to 2n/(b
2
!b

1
). This is analogous to results

obtained in acoustics [17].
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